首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26936篇
  免费   129篇
  国内免费   16篇
  2019年   21篇
  2018年   1112篇
  2017年   1406篇
  2016年   1123篇
  2015年   676篇
  2014年   542篇
  2013年   570篇
  2012年   1309篇
  2011年   1001篇
  2010年   116篇
  2009年   201篇
  2008年   78篇
  2007年   73篇
  2006年   182篇
  2005年   7468篇
  2004年   6330篇
  2003年   4242篇
  2002年   457篇
  2001年   35篇
  2000年   42篇
  1999年   21篇
  1998年   15篇
  1997年   25篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1967年   6篇
  1961年   1篇
  1958年   1篇
  1947年   1篇
  1929年   1篇
  1917年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.

Background

Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied.

Results

The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared with batch SSCF. However, the ethanol yield and concentration remained in the same range as in batch mode.

Conclusion

Ethanol concentrations of about 6% (w/v) were obtained, which will result in a significant reduction in the cost of downstream processing, compared with SSF of the lignocellulosic substrate alone. As an additional benefit, it is also possible to recover the protein-rich residue from the SWM in the process configurations presented, providing a valuable co-product.
  相似文献   
102.

Background

Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in ‘modality’, that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses.

Results

We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a ‘concept of modality’ in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate.

Conclusion

With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a ‘concept of modality’, we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic ‘costs of plasticity’. With that, we suggest that ‘modality’ matters as an important factor in understanding and explaining the evolution of inducible defenses.
  相似文献   
103.
104.

Background

Genome-wide assays performed in Arabidopsis and other organisms have revealed that the translation status of mRNAs responds dramatically to different environmental stresses and genetic lesions in the translation apparatus. To identify additional features of the global landscape of translational control, we used microarray analysis of polysomal as well as non-polysomal mRNAs to examine the defects in translation in a poly(A) binding protein mutant, pab2 pab8, as well as in a mutant of a large ribosomal subunit protein, rpl24b/shortvalve1.

Results

The mutation of RPL24B stimulated the ribosome occupancy of mRNAs for nuclear encoded ribosomal proteins. Detailed analysis yielded new insights into the translational regulon containing the ribosomal protein mRNAs. First, the ribosome occupancy defects in the rpl24b mutant partially overlapped with those in a previously analyzed initiation factor mutant, eif3h. Second, a group of mRNAs with incomplete coding sequences appeared to be uncoupled from the regulon, since their dependence on RPL24B differed from regular mRNAs. Third, different sister paralogs of the ribosomal proteins differed in their translation state in the wild-type. Some sister paralogs also differed in their response to the rpl24b mutation. In contrast to rpl24b, the pab2 pab8 mutant revealed few gene specific translational defects, but a group of seed storage protein mRNAs were stimulated in their ribosome occupancy. In the course of this work, while optimizing the statistical analysis of ribosome occupancy data, we collected 12 biological replicates of translation states from wild-type seedlings. We defined 20% of mRNAs as having a high variance in their translation state. Many of these mRNAs were functionally associated with responses to the environment, suggesting that subtle variation in the environmental conditions is sensed by plants and transduced to affect the translational efficiency of hundreds of mRNAs.

Conclusions

These data represent the first genome-wide analysis of translation in a eukaryote defective in the large ribosomal subunit. RPL24 and eIF3h play similar but non-identical roles in eukaryotic translation. The data also shed light on the fine structure of the regulon of ribosomal protein mRNAs.
  相似文献   
105.

Background

Aging of the immune system, known as immunosenescence, is associated with profound changes in both innate and adaptive immune responses, resulting in increased susceptibility to infection and a decreased ability to respond to vaccination. The purpose of this study was to investigate the effect of age and menopause on the expression of 22 different cytokines/chemokines in both plasma and cervical lavage samples from female sex-worker cohort from Nairobi, Kenya (age range 20–65).

Results

Cytokine/chemokine levels were measured using a Miliplex multiplex assay (Millipore). We found that age positively correlated with MCP-1 (p?=?0.0002) and IP-10 (p?=?0.03) systemic cytokine expression, and that women over 50 expressed the highest levels of these cytokines, but also had elevated expression of MIG (ANOVA p?=?0.0096) and MIP-3β(ANOVA p?=?0.0434). We also found that IL-8 (p?=?0.047) and sCD40L (p?=?0.01) systemic expression negatively correlated with age. Further, MIG (p?=?0.0081) and MCP-1 (p?=?0.0157) were present at higher levels in post-menopausal women suggesting a potential estrogen dependant systemic regulation of these cytokines. In cervical lavage samples, age did not directly correlate with the expression of any of the tested cytokines/chemokines, however sIL-2Rα (ANOVA p?=?0.0170) and IL-15 (ANOVA p?=?0.0251)were significantly higher in women over 50. Menopause was shown to have a more profound effect on cytokine expression in the cervical mucosa with MIG (p?=?0.0256), MIP-3α (p?=?0.0245), IL-1β (p?=?0.0261), IL-6 (p?=?0.0462), IL-8 (p?=?0.007), IP-10 (p?=?0.0357) and MCP-1 (p?=?0.0427) all significantly under-expressed in post-menopausal women.

Conclusions

This study demonstrates that aging and menopause-associated hormonal changes are associated with significant changes in systemic and mucosal cytokine/chemokine expression, which may have implications for the age-related decline in the ability to fight against infections.
  相似文献   
106.

Background

The pro-inflammatory status of the elderly triggers most of the age-related diseases such as cancer and atherosclerosis. Atherosclerosis, the leading cause world wide of morbidity and death, is an inflammatory disease influenced by life-style and genetic host factors. Stimuli such as oxLDL or microbial ligands have been proposed to trigger inflammation leading to atherosclerosis. It has recently been shown that oxLDL activates immune cells via the Toll-like receptor (TLR) 4/6 complex. Several common single nucleotide polymorphisms (SNPs) of the TLR system have been associated with atherosclerosis. To investigate the role of TLR-6 we analyzed the association of the TLR-6 SNP Pro249Ser with atherogenesis.

Results

Genotyping of two independent groups with CAD, as well as of healthy controls revealed a significant association of the homozygous genotype with a reduced risk for atherosclerosis (odds ratio: 0.69, 95% CI 0.51-0.95, P?=?0.02). In addition, we found a trend towards an association with the risk of restenosis after transluminal coronary angioplasty (odds ratio: 0.53, 95% CI 0.24-1.16, P?=?0.12). In addition, first evidence is presented that the frequency of this protective genotype increases in a healthy population with age. Taken together, our results define a role for TLR-6 and its genetic variations in modulating the inflammatory response leading to atherosclerosis.

Conclusions

These results may lead to a better risk stratification, and potentially to an improved prophylactic treatment of high-risk populations. Furthermore, the protective effect of this polymorphism may lead to an increase of this genotype in the healthy elderly and may therefore be a novel genetic marker for the well-being during aging.
  相似文献   
107.
108.

Background

Studies about associations of infections with herpes viruses and other pathogens, such as Chlamydia pneumoniae (CP) and Helicobacter pylori (HP) with cardiovascular disease (CVD), diabetes mellitus (DM), frailty and/or mortality are conflicting. Since high levels of antibodies against these pathogens occur in the elderly, the role of these pathogens in morbidity and mortality of vulnerable elderly was explored.

Results

Blood samples of 295 community dwelling psycho-geriatric patients were tested for IgG antibodies to herpes simplex virus type 1 and 2, varicella zoster virus, Epstein Barr virus (EBV), cytomegalovirus (CMV), human herpes virus type 6 (HHV6), CP and HP. Frailty was defined with an easy-to-use previously described frailty risk score. Relative risks (RR) with 95% confidence intervals were calculated to evaluate associations between CVD, DM, frailty and pathogens. Pathogens as a predictor for subsequent mortality were tested using Kaplan Meier analyses and Cox proportional hazard models. The mean age was 78 (SD: 6.7) years, 20% died, 44% were defined as frail, 20% had DM and 49% had CVD. Presence of CMV antibody titers was associated with frailty, as shown by using both qualitative and quantitative tests, RR ratio 1.4 (95% CI: 1.003-2.16) and RR ratio 1.5 (95% CI: 1.06-2.30), respectively. High IgG antibody titers of HHV6 and EBV were associated with DM, RR ratio 3.3 (95% CI: 1.57-6.49). None of the single or combined pathogens were significantly associated with mortality and/or CVD.

Conclusions

Prior CMV infection is associated with frailty, which could be in line with the concept that CMV might have an important role in immunosenescence, while high IgG titers of HHV6 and EBV are associated with DM. No association between a high pathogen burden and morbidity and/or mortality could be demonstrated.
  相似文献   
109.

Background

This study examines associations between markers of nutritional status and lymphocyte subsets and seeks to determine if lymphocyte profile is predictive of survival in elderly Australians residing in aged care facilities. Aged yet still ambulatory subjects (n?=?88, 73% female) living in low-level care and requiring minimal assistance were studied for 143 weeks. At baseline when participants were aged (mean?±?SD) 86.0?±?5.9 years, dietary intake was determined by 3-day weighed food record, body composition was assessed by dual energy X-ray absorptiometry (DXA) and a venous blood sample was taken.

Results

At baseline assessment, study participants were consuming nutrient-poor diets and most had symptoms of chronic disease. Although overweight, 40% exhibited sarcopenia. Markers of nutritional status did not relate closely to immune cell numbers (absolute or relative), which on average were within the normal range. Men had lower numbers of CD3+CD4+ cells (CD4+ T cells), a higher proportion of CD3? CD16± CD56± (natural killer (NK) cells) and a higher ratio of NK: CD4+ T cells than women (all P?<?0.05). The main age-related changes evident were decreased T cells, particularly low CD4+ T cell counts, and increased numbers of CD19+ (B-cell) and NK cells. During the 143 week duration of follow-up, about one quarter of the study participants died, with death more likely in men than women (P?<?0.01). Poor survival was predicted by the presence of decreased numbers of CD4+ T cells (hazard ratio (HR) 0.919, P?<?0.01) and expanded numbers of NK cells (HR 1.085, P?<?0.05) in the blood, and therefore the presence of a high NK: CD4+ T cell ratio (HR 30.521, P?<?0.01).

Conclusions

The NK: CD4+ T cell ratio may potentially have clinical utility for predicting longevity in elderly populations. Further studies are needed in other elderly populations to confirm this finding.
  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号